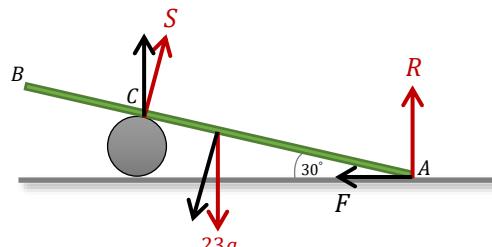

GCE A LEVEL MARKING SCHEME

SUMMER 2023

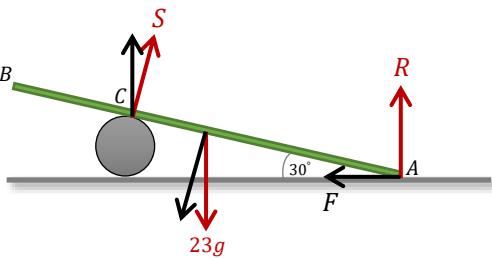
**A LEVEL
FURTHER MATHEMATICS
UNIT 6 FURTHER MECHANICS B
1305U60-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.


It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.


WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 6 FURTHER MECHANICS B

SUMMER 2023 MARK SCHEME

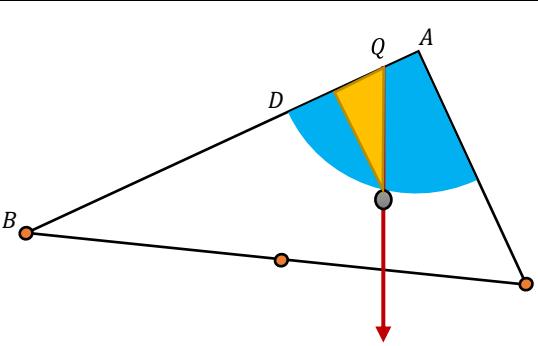
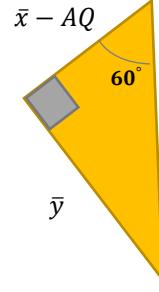
Q1	Solution	Mark	Notes
(a)	<p>Resolve vertically</p> $S \cos 30^\circ + R = 23g \quad \frac{\sqrt{3}}{2}S + R = 23g$ <p>Resolve horizontally</p> $F = S \sin 30^\circ \quad F = \frac{1}{2}S$ $F = \frac{2}{3}R$ $\frac{2}{3}R = S \sin 30^\circ \quad \frac{2}{3}R = \frac{1}{2}S$ $R = \frac{3}{4}S$ $\frac{\sqrt{3}}{2}S + \frac{3}{4}S = 23g$ $S = 139 \cdot 47(80054) \quad (\text{N})$ $R = 104 \cdot 60(85041) \quad (\text{N})$ <p>Note exact forms</p> $S = \frac{92g}{3}(2\sqrt{3} - 3) = \frac{92g}{2\sqrt{3} + 3}$ $R = 23g(2\sqrt{3} - 3) = \frac{69g}{2\sqrt{3} + 3}$	M1 A1 M1 A1 B1 m1 A1 A1 [8]	Dim. correct equation with 3 terms $23g = 225 \cdot 4 = \frac{1127}{5}$ Dim. correct equation Used Elimination of one variable Both M's needed above cao cao
(b)	<p>Moments about A</p> $AC \times S = 23g \times 4 \cos 30^\circ$ $AC \times 139 \cdot 478 \dots = 225 \cdot 4 \times 2\sqrt{3}$ $AC = \frac{23g \times 4 \cos 30^\circ}{139 \cdot 4780054} \quad \frac{225 \cdot 4 \times 2\sqrt{3}}{139 \cdot 4780054}$ $AC = 5 \cdot 598076211 \text{ (m)} \quad \text{or} \quad = \frac{6+3\sqrt{3}}{2} \text{ (m)}$	M1 A1 A1 A1 A1 [4]	Dim. correct equation, no extra terms LHS RHS FT S from (a) cao

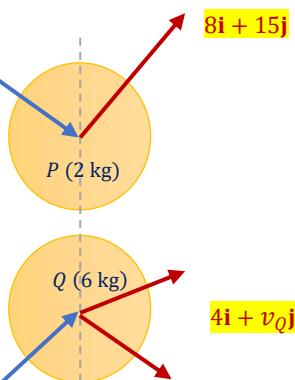
(c)	No, both reactions remain the same and (one of the following) <ul style="list-style-type: none"> Calculations in (a) are independent of the location of the centre of mass Moments were not used in part (a) and so distances were not considered 	E1 [1]	
Total for Question 1			13

Q1	Alternative Solution	Mark	Notes
(a)	<p>Resolve parallel to AB</p> $23g \sin 30^\circ = R \sin 30^\circ + F \cos 30^\circ$ $\frac{23}{2}g = \frac{1}{2}R + \frac{\sqrt{3}}{2}F \quad \Leftrightarrow \quad 23g = R + \sqrt{3}F$ <p>Resolve perpendicular to AB</p> $S + R \cos 30^\circ = 23g \cos 30^\circ + F \sin 30^\circ$ $S + \frac{\sqrt{3}}{2}R = \frac{23\sqrt{3}}{2}g + \frac{1}{2}F \Leftrightarrow 2S + \sqrt{3}R = 23\sqrt{3}g + F$ $F = \frac{2}{3}R$ <p>Elimination of one variable (in either equation)</p> $23g = R + \sqrt{3}\left(\frac{2}{3}R\right)$ $S = 139 \cdot 47(80054) \quad (\text{N})$ $R = 104 \cdot 60(85041) \quad (\text{N})$ <p>Note exact forms</p> $S = \frac{92g}{3}(2\sqrt{3} - 3) = \frac{92g}{2\sqrt{3} + 3}$ $R = 23g(2\sqrt{3} - 3) = \frac{69g}{2\sqrt{3} + 3}$	M1 A1 M1 A1 B1 m1 A1 A1 [8]	Dim. correct equation with 3 terms $23g \sin 30^\circ = \frac{23}{2}g = \frac{1127}{10} = 112 \cdot 7$ Dim. correct equation with 4 terms Used cao cao

Q2	Solution			Mark	Notes											
	<table border="1"> <thead> <tr> <th>Shape</th><th>Volume/Mass</th><th>Distance of COM from base</th></tr> </thead> <tbody> <tr> <td>Large Cone</td><td>$\frac{1}{3}\pi(3x)^2(6y)\rho$ $(= 18\pi x^2 y)$</td><td>$\frac{1}{4}(6y)$ $(= \frac{3y}{2})$</td></tr> <tr> <td>Small Cone</td><td>$\frac{1}{3}\pi(x)^2(2y)\rho$ $(= \frac{2}{3}\pi x^2 y)$</td><td>$4y + \frac{1}{4}(2y)$ $(= \frac{9y}{2})$</td></tr> <tr> <td>Frustum</td><td>$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ $(= \frac{52}{3}\pi x^2 y)$</td><td>$\bar{y}$</td></tr> </tbody> </table>	Shape	Volume/Mass	Distance of COM from base	Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ $(= 18\pi x^2 y)$	$\frac{1}{4}(6y)$ $(= \frac{3y}{2})$	Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ $(= \frac{2}{3}\pi x^2 y)$	$4y + \frac{1}{4}(2y)$ $(= \frac{9y}{2})$	Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ $(= \frac{52}{3}\pi x^2 y)$	\bar{y}		B1	Condone omission of ρ (mass per unit volume) Both volume and distance
Shape	Volume/Mass	Distance of COM from base														
Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ $(= 18\pi x^2 y)$	$\frac{1}{4}(6y)$ $(= \frac{3y}{2})$														
Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ $(= \frac{2}{3}\pi x^2 y)$	$4y + \frac{1}{4}(2y)$ $(= \frac{9y}{2})$														
Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ $(= \frac{52}{3}\pi x^2 y)$	\bar{y}														
			B1	Identification of $2y$ in either												
			B1	For both volume and distance												
			B1	cao												
	Moments about base		M1	Masses and moments consistent All terms, allow sign errors FT table throughout												
	$\frac{52}{3}\pi x^2 y \times \bar{y} = 18\pi x^2 y \times \frac{3y}{2} - \frac{2}{3}\pi x^2 y \times \frac{9y}{2}$		A1													
	$\frac{52}{3} \times \bar{y} = 18 \times \frac{3y}{2} - \frac{2}{3} \times \frac{9y}{2}$		A1	Convincing (cao)												
	$\bar{y} = \frac{18}{13}y$		[7]													
	Total for Question 2			7												

Q2	Alternative Solution	Mark	Notes												
(b)	<table border="1" data-bbox="295 271 874 743"> <thead> <tr> <th data-bbox="295 271 462 327">Shape</th><th data-bbox="462 271 779 327">Volume/Mass</th><th data-bbox="779 271 874 327">Distance of COM from vertex</th></tr> </thead> <tbody> <tr> <td data-bbox="295 327 462 451">Large Cone</td><td data-bbox="462 327 779 451">$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)</td><td data-bbox="779 327 874 451">$\frac{3}{4}(6y)$ ($= \frac{9y}{2}$)</td></tr> <tr> <td data-bbox="295 451 462 574">Small Cone</td><td data-bbox="462 451 779 574">$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)</td><td data-bbox="779 451 874 574">$\frac{3}{4}(2y)$ ($= \frac{3y}{2}$)</td></tr> <tr> <td data-bbox="295 574 462 743">Frustum</td><td data-bbox="462 574 779 743">$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)</td><td data-bbox="779 574 874 743">\bar{y}</td></tr> </tbody> </table> <p>Moments about vertex</p> $\frac{52}{3}\pi x^2 y \times \bar{y} = 18\pi x^2 y \times \frac{9y}{2} - \frac{2}{3}\pi x^2 y \times \frac{3y}{2}$ $\frac{52}{3} \times \bar{y} = 18 \times \frac{9y}{2} - \frac{2}{3} \times \frac{3y}{2}$ $\bar{y} = \frac{60}{13}y$ <p>\therefore Distance from base = $6y - \frac{60}{13}y = \frac{18}{13}y$</p>	Shape	Volume/Mass	Distance of COM from vertex	Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)	$\frac{3}{4}(6y)$ ($= \frac{9y}{2}$)	Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)	$\frac{3}{4}(2y)$ ($= \frac{3y}{2}$)	Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)	\bar{y}	B1 B1 B1 B1 M1 A1 A1 	Condone omission of ρ (mass per unit volume) Both volume and distance Identification of $2y$ in either Both volume and distance cao Masses and moments consistent All terms, allow sign errors FT table throughout Convincing (cao) [7]
Shape	Volume/Mass	Distance of COM from vertex													
Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)	$\frac{3}{4}(6y)$ ($= \frac{9y}{2}$)													
Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)	$\frac{3}{4}(2y)$ ($= \frac{3y}{2}$)													
Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)	\bar{y}													
	<table border="1" data-bbox="295 1136 874 1608"> <thead> <tr> <th data-bbox="295 1136 462 1192">Shape</th><th data-bbox="462 1136 779 1192">Volume/Mass</th><th data-bbox="779 1136 874 1192">Distance of COM from top of frustum</th></tr> </thead> <tbody> <tr> <td data-bbox="295 1192 462 1316">Large Cone</td><td data-bbox="462 1192 779 1316">$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)</td><td data-bbox="779 1192 874 1316">$\frac{3}{4}(6y) - 2y$ ($= \pm \frac{5y}{2}$)</td></tr> <tr> <td data-bbox="295 1316 462 1439">Small Cone</td><td data-bbox="462 1316 779 1439">$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)</td><td data-bbox="779 1316 874 1439">$\frac{1}{4}(2y)$ ($= \pm \frac{y}{2}$)</td></tr> <tr> <td data-bbox="295 1439 462 1608">Frustum</td><td data-bbox="462 1439 779 1608">$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)</td><td data-bbox="779 1439 874 1608">\bar{y}</td></tr> </tbody> </table> <p>Moments about smaller circular surface</p> $\frac{52}{3}\pi x^2 y \times \bar{y} = 18\pi x^2 y \times \pm \frac{5y}{2} - \frac{2}{3}\pi x^2 y \times \mp \frac{y}{2}$ $\frac{52}{3} \times \bar{y} = 18 \times \frac{5y}{2} - \frac{2}{3} \times -\frac{y}{2}$ $\bar{y} = \frac{34}{13}y$ <p>\therefore Distance from base = $4y - \frac{34}{13}y = \frac{18}{13}y$</p>	Shape	Volume/Mass	Distance of COM from top of frustum	Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)	$\frac{3}{4}(6y) - 2y$ ($= \pm \frac{5y}{2}$)	Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)	$\frac{1}{4}(2y)$ ($= \pm \frac{y}{2}$)	Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)	\bar{y}	B1 B1 B1 B1 M1 A1 A1 	Condone omission of ρ (mass per unit volume) Sight of $2y$ in either Identification of $2y$ in either Both volume and distance cao Masses and moments consistent All terms, allow sign errors FT table throughout Convincing (cao) [7]
Shape	Volume/Mass	Distance of COM from top of frustum													
Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ ($= 18\pi x^2 y$)	$\frac{3}{4}(6y) - 2y$ ($= \pm \frac{5y}{2}$)													
Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ ($= \frac{2}{3}\pi x^2 y$)	$\frac{1}{4}(2y)$ ($= \pm \frac{y}{2}$)													
Frustum	$(18\pi x^2 y - \frac{2}{3}\pi x^2 y)\rho$ ($= \frac{52}{3}\pi x^2 y$)	\bar{y}													



Q3	Solution	Mark	Notes
(a)	period = 12 (hours) $T = 12$ amplitude = 4 (m) $a = 4$	B1 B1 [2]	si si
(b)	$\omega = \frac{\pi}{6}$ $\omega = \frac{\pi}{21600}$ Using $x = \pm a \cos(\omega t)$ $x = -4 \cos\left(\frac{\pi}{6}t\right)$	B1 M1 A1 [3]	$\omega = \frac{2\pi}{\text{period}}$ FT period from (a) Allow $\pm a \sin(\omega t)$ oe, cao
(c)	$-2 = -4 \cos\left(\frac{\pi}{6}t\right)$ $t = 2$ (hours) $t = 10$ (hours) Earliest time: 7 a.m. and Latest time: 3 p.m.	M1 A1 A1 A1 [4]	FT x from (b) cao cao cao, both times
(d)	$v = \frac{dx}{dt}$ $v = 4\sin\left(\frac{\pi}{6}t\right) \times \frac{\pi}{6}$ $v = \frac{2}{3}\pi \sin\left(\frac{\pi}{6}t\right)$ At $t = 9$, $v = \frac{2}{3}\pi \sin\left(\frac{\pi}{6} \times 9\right)$ $v = -\frac{2}{3}\pi$ $= -2 \cdot 0(94 \dots)$ Rate (at which the level of water is falling) $= \frac{2}{3}\pi$ (m/hour)	M1 A1 M1 A1 [4]	FT x from (b) FT v
Total for Question 3		13	


Further Notes

	Equivalent forms for A1
(b)	$x = -4 \cos\left(\frac{\pi}{6}t\right) = 4 \sin\left(\frac{\pi}{6}t - \frac{\pi}{2}\right) = -4 \sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) = 4 \cos\left(\frac{\pi}{6}t \pm \pi\right)$
	Corresponding derivatives for part (d)
	$v = x' = 4\sin\left(\frac{\pi}{6}t\right) \times \frac{\pi}{6} = 4 \cos\left(\frac{\pi}{6}t - \frac{\pi}{2}\right) \times \frac{\pi}{6} = -4 \cos\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) \times \frac{\pi}{6} = -4 \sin\left(\frac{\pi}{6}t \pm \pi\right) \times \frac{\pi}{6}$

Q3	Alternative Solution	Mark	Notes
	<p>Using $t = 9$ (5 a.m. to 2 p.m.) to deduce that</p> $x = 0$ <p>Using an expression for v with $x = 0$</p> $v = \pm \sqrt{\omega^2 - a^2}$ $v = \pm \frac{2\pi}{3} \quad = \pm 2 \cdot 0(94 \dots)$ <p>Rate (at which the level of water is falling) $= \frac{2}{3}\pi$ (m/hour)</p>	M1 A1 m1 A1 [4]	$x = -4 \cos\left(\frac{\pi}{6} \times 9\right)$

Q4	Solution				Mark	Notes																							
(a)	<table border="1"> <thead> <tr> <th>Shape</th> <th>Mass</th> <th>Distance from AC</th> <th>Distance from AB</th> </tr> </thead> <tbody> <tr> <td></td> <td>$\frac{\pi(12)^2}{4} \times 2m$ $(= 72m\pi)$</td> <td>$\frac{16}{\pi}$</td> <td>$\frac{16}{\pi}$</td> </tr> <tr> <td>C </td> <td>$50m$</td> <td>0</td> <td>28</td> </tr> <tr> <td>F </td> <td>$30m$</td> <td>$22 \cdot 5$</td> <td>14</td> </tr> <tr> <td>B </td> <td>$20m$</td> <td>45</td> <td>0</td> </tr> <tr> <td><i>Lamina</i></td> <td>$(72\pi + 100)m$</td> <td>\bar{x}</td> <td>\bar{y}</td> </tr> </tbody> </table>				Shape	Mass	Distance from AC	Distance from AB		$\frac{\pi(12)^2}{4} \times 2m$ $(= 72m\pi)$	$\frac{16}{\pi}$	$\frac{16}{\pi}$	C	$50m$	0	28	F	$30m$	$22 \cdot 5$	14	B	$20m$	45	0	<i>Lamina</i>	$(72\pi + 100)m$	\bar{x}	\bar{y}	
Shape	Mass	Distance from AC	Distance from AB																										
	$\frac{\pi(12)^2}{4} \times 2m$ $(= 72m\pi)$	$\frac{16}{\pi}$	$\frac{16}{\pi}$																										
C	$50m$	0	28																										
F	$30m$	$22 \cdot 5$	14																										
B	$20m$	45	0																										
<i>Lamina</i>	$(72\pi + 100)m$	\bar{x}	\bar{y}																										
	<p>(i) Moments about AC</p> $\left((72\pi) \left(\frac{16}{\pi} \right) + (30)(22 \cdot 5) + (20)(45) \right) m$ $= (72\pi + 100)m \times \bar{x}$ $(1152 + 675 + 900)m = (72\pi + 100)m \times \bar{x}$ $\bar{x} = 8 \cdot 36(0038474) \quad (\text{cm})$				B1 B1	Correct mass Both distances correct																							
	<p>(ii) Moments about AB</p> $\left((72\pi) \left(\frac{16}{\pi} \right) + (30)(14) + (50)(28) \right) m$ $= (72\pi + 100)m \times \bar{y}$ $(1152 + 420 + 1400)m = (72\pi + 100)m \times \bar{y}$ $\bar{y} = 9.11(1123705) \quad (\text{cm})$				B2 A1 A1 A1 A1	Masses and distances for C, F, B cao Masses and moments consistent All terms, allow sign errors FT table																							
(b)	<p>Length $AP = \bar{y}$</p>				B1 [1]	FT \bar{y} from (a)(ii)																							

<p>(c)</p>	<p>If hanging in equilibrium, vertical passes through centre of mass.</p> $\tan 60^\circ = \frac{\bar{y}}{\bar{x} - AQ}$ $AQ = \bar{x} - \frac{\bar{y}}{\sqrt{3}}$ $AQ = 3.0997 \dots \text{ (cm)}$	<p>M1</p> <p>A1</p> <p>A1</p> <p>[3]</p>	<p>Correct triangle identified FT \bar{x} and \bar{y} from (a)</p> <p>FT \bar{x} and \bar{y} from (a)</p> $\bar{x} - AQ = \frac{\bar{y}}{\tan 60^\circ} = \bar{y} \cot 60^\circ = 5 \cdot 2603 \dots$ <p>FT \bar{x} and \bar{y} from (a) provided $AQ < 12$, i.e. Q lies on AD</p>
<p>Total for Question 4</p>			<p>15</p>

Q5	Solution	Mark	Notes
(a)	$\mathbf{r}_P = (8\mathbf{i} - 6\mathbf{j})t$ $\mathbf{r}_Q = (12\mathbf{i} - 48\mathbf{j}) + (4\mathbf{i} + 10\mathbf{j})t$ <p>If spheres collide, then $\mathbf{r}_P = \mathbf{r}_Q$ for some value of t. Comparison of coefficients</p> <p>\mathbf{i} $8t = 12 + 4t$ $t = 3$</p> <p>\mathbf{j} $-6t = -48 + 10t$ $t = 3$</p> <p>Value of t for both components are equal, therefore spheres collide.</p>	B1 B1 M1 A1 [4]	Both i and j coefficients compared
(b)	<p>Before collision</p> <p>After collision</p> <p>Speed = 5</p> $\sqrt{4^2 + v_Q^2} = 5$ $v_Q = \pm 3$ <p>Con. of momentum (along line of centres)</p> $(2)(-6) + (6)(10) = 2v_P + 6v_Q$ $48 = 2v_P + (6)(\pm 3)$ $v_Q = +3 \Rightarrow v_P = 15$ $v_Q = -3 \Rightarrow v_P = 33$ <p>Restitution (along line of centres)</p> $v_Q - v_P = -e(10 - -6)$ $3 - 15 = -e(10 - -6) \quad \text{OR} \quad -3 - 33 = -e(10 - -6)$ $e = \frac{3}{4} \quad e = \frac{9}{4}$ $e = \frac{3}{4}$ <p>Velocity of sphere P, $\mathbf{v}_P = 8\mathbf{i} + 15\mathbf{j}$ (ms⁻¹)</p>	M1 A1 M1 A1 A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 [9]	Used At least one value Attempted All correct. FT v_Q Both values of v_P FT v_Q and v_P All correct with their v_P corresponding to either v_Q Both values of e with $e (= \frac{9}{4}) > 1$ clearly discarded cao

(c)	Impulse, \mathbf{I} = change in momentum $\mathbf{I} = 2(0 - (8\mathbf{i} + 15\mathbf{j}))$ $\mathbf{I} = -(16\mathbf{i} + 30\mathbf{j})$ $ \mathbf{I} = 34 \text{ (Ns)}$	M1 A1 A1 [3]	Used $\text{FT } v_p$ cao
Total for Question 5			16

Q5	Alternative Solutions	Mark	Notes
(a)	$\mathbf{r}_Q - \mathbf{r}_P = (12 - 4t)\mathbf{i} + (-48 + 16t)\mathbf{j}$ $\mathbf{r}_Q - \mathbf{r}_P = 0$ $\Rightarrow 12 - 4t = 0 \text{ and } -48 + 16t = 0$ <p>$t = 3$ for both components are equal, therefore spheres collide.</p>	B1 B1 M1 A1 [4]	B1 for each component
(a)	$\mathbf{r}_Q - \mathbf{r}_P = (12 - 4t)\mathbf{i} + (-48 + 16t)\mathbf{j}$ <p>Forming and solving a quadratic equation</p> $ \mathbf{r}_Q - \mathbf{r}_P ^2 = 272t^2 - 1632t + 2448 = 0$ <p>$t = 3$ or $b^2 - 4ac = 0$, therefore spheres collide.</p>	B1 B1 M1 A1 [4]	B1 for each component

Q6	Solution	Mark	Notes
(a)	Application of N2L $-T - 250\ 000v = 50\ 000a$ $T = 312\ 500x$ $-312\ 500x - 250\ 000v = 50\ 000 \frac{d^2x}{dt^2}$ $4 \frac{d^2x}{dt^2} + 20 \frac{dx}{dt} + 25x = 0$	M1 A1 B1 A1 [4]	Dim. correct. $250\ 000v$ and T in same direction $a = \frac{d^2x}{dt^2}$ $\div 12\ 500$ Convincing
(b)	Auxiliary equation: $4r^2 + 20r + 25 = 0$ Roots: $r = -\frac{5}{2}$ (twice) General solution: $x = e^{-\frac{5}{2}t}(At + B)$ Initial conditions $t = 0, x = 0, (x' = U)$ $B = 0 \quad U = -\frac{5}{2}B + A$ Differentiating $v = x' = -\frac{5}{2}e^{-\frac{5}{2}t}(At + B) + e^{-\frac{5}{2}t}A$ $\therefore x = Ue^{-\frac{5}{2}t}t$	M1 A1 B1 M1 A1 M1 A1 A1 [8]	Used in general solution cao $U = -\frac{5}{2}B + A$ Initial conditions give $A = U$ cao
(c)	$v = x' = Ue^{-\frac{5}{2}t} \left(1 - \frac{5}{2}t\right)$ When $v = 0 \ (\Rightarrow t = \frac{2}{5})$ Using $x = Ue^{-\frac{5}{2}t}t$ at $t = \frac{2}{5}$ and $x = 0 \cdot 3$. $0 \cdot 3 = Ue^{-\frac{5}{2}(\frac{2}{5})} \left(\frac{2}{5}\right)$ $U = \frac{3}{4}e = 2.0387 \dots \text{ (ms}^{-1}\text{)}$	M1 m1 A1 [3]	FT $v = x'$ FT $v = x'$ and $t > 0$ cao
(d)	Critical damping Repeated root in (b)	E1 [1]	$oe, b^2 - 4ac = 0$ or $k^2 - \omega^2 = 0$ when written in the form $\frac{d^2x}{dt^2} + 2k \frac{dx}{dt} + \omega^2 x = 0$
Total for Question 6			16